Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.
نویسندگان
چکیده
The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2) n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.
منابع مشابه
Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.
Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques...
متن کاملDissociation of the benzene molecule by UV and soft X-rays in circumstellar environment
Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by UV and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule...
متن کاملSolvation Ultrafast Dynamics of Reactions. 14. Molecular Dynamics and ab Initio Studies of Charge-Transfer Reactions of Iodine in Benzene Clusters
Previous experiments have been carried out in this laboratory to investigate the dynamics of iodine-benzene charge-transfer reactions. Both 1:1 solute-solvent complexes and 1:n clusters were studied on the femtosecond time scale with kinetic energy time-of-flight mass spectrometry (Cheng, P. Y.; Zhong, D.; Zewail, A. H. J. Chem. Phys. 1996, 105, 6216). Here, we report theoretical studies of the...
متن کاملMicro-hydration of the MgNO3+ cation in the gas phase.
Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O r...
متن کاملActivation of Dioxygen by Halocarbon Ions
Tandem mass spectrometry is used to show that low energy collisions of ionized halocarbenes, including CBr2 and CBrCl•+, with molecular oxygen lead to (i) decarbonation with formation of the dihalogen molecular cation and (ii) oxygenolysis yielding BrCO+. Both reactions may occur via the same ion-molecule addition product of molecular oxygen and the ionized carbene. Reaction is favored at low c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 21 شماره
صفحات -
تاریخ انتشار 2017